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Simulation-based inference

p

Parameters 0 —_— Simulator —_— Observables z

Latent 2z

>
Prediction: e« Well-motivated mechanistic, causal model
« Simulator can generate samples x ~ p(z|6)
<€
Inference: < Interactions between low-level components lead to

challenging inverse problems

e Likelihood p(z|0) = /dz p(x, z|@) is intractable



Prediction

Eime
0,z,x ~p(0,z,x)
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Inference

;ime
0,z ~p(0,z|x)
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The case of particle physics
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Simulator

Parameters Observables
) > Latent z > x
SM with Simulated observables x Real observations &},

parameters 6




Parameters
of interest

Parton-level Theory
momenta parameters

Latent variables

Zp ——
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Parameters

Latent variables .
of interest

Shower  Parton-level Theory
splittings momenta parameters

ZS(_ZP(—Q

7/41



Parameters

Latent variables .
of interest

Detector Shower  Parton-level Theory
interactions splittings momenta parameters

24 —— 2y —— Zp ——— )
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Parameters

Features Latent variables .
of interest
Observables Detector Shower  Parton-level Theory
interactions splittings momenta parameters
T < 24 —— Zg —— Zp ——— )

[ antik,R=1 |

[Image source: M. Cacciari,
G. Salam, G. Soyez 0802.1189]
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N

yikes!
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Inference



Problem statement(s)

Start with

e asimulator that lets you generate N samples z; ~ p(x;|0;) (for parameters
@; of our choice),

e observed data Lobs ™~ p(iBobs ‘Otrue)’

e apriorp(6).

Then,
a) estimate 0, ue b) construct confidence  c) estimate the posterior
(e.g., MLE) sets (0| xons)
(or sample from it)
9 0 0, 1

J

j b J r
JDerue 95% CL
. ~
Qtru()

0; 0; 0;
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Inference algorithms

Data
dimensionality

4

Learn summary

RECENT DEVELOPMENTS

statistics
Neural
likelihood ratio “Gold mining”
Neural posterior
Neural likelihood

. Sequential

Apprommate methods
Bayesian
Computation
“Histograms”
TRADITIONAL METHODS >

Computational cost of
running simulator
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Inference algorithms

Data
dimensionality
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The frequentist approach



The frequentist (physicist's) way

The Neyman-Pearson lemma states that the likelihood 0;
ratio

r(z|60,01) = M

p(z|61)

is the most powerful test statistic to discriminate between
a null hypothesis 6y and an alternative 0.

[X. On the Problem of the most Efficient Tests of Statistical Hypotheses.

By J. Nuvman, Nencki Institute, Soc. Sci. Lit. Varsoviensis, and Lecturer at the
Central College of Agriculture, Warsaw, and B. 8. Pmarson, Department of
Applied Statistics, University College, London.

(Communicated by K. Pearson, F.R.S.)

(Received August 31, 1932.—Read November 10, 1932.)
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Observables 1D summary statistics
_ .’Tf’

Parameters .

Define a projection function s : X — R mapping observables 2 to a summary

statistic 2’ = s(x).
Then, approximate the likelihood p(z|€) with the surrogate p (z|0) = p(z'|0).

From this it comes
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Discovery of the Higgs boson at 5-0
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The likelihood ratio trick

Simulator
(intractable likelihood p(x(fy)) ¢, — EIMBIELS

Q000

Q
Q

\ O
O
Classifier

00000

Simulator
(intractable likelihood p(|61)) ¢, —» ESIMBIER

al



The solution § found after training approximates the optimal classifier

p(z|61)
z]60) + p(x[61)

§(x) = s (x) = o

Therefore,
1— §(x)

?“(33‘(90,91) ~ ’f'(m‘eo,el) — W
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To avoid retraining a classifier § for every (g, 1) pair, fix 01 to 0ef and train a
single parameterized classifier § (2|0, Orer) where 0y is also given as input.

Therefore, we have
1 — §(x|6g, Orer)

such that forany (6, 6),
T (33“90, Href)
r(x|0y,01) ~ — :
(100, 01) = 52161, 6
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Inference

Parameters @

Observables

_e

Simulator

|
> T >

Observed data

Approximate
likelihood
ratio

Tobs

Prior

arg min L]g] — 7#(2|f) ———>
g

1. Simulation

Run simulator and save data

2. Machine Learning

Train NN classifier, interpret as
likelihood ratio estimator

3. Inference

Amortized: cheap
to repeat for new data



Gold mining

Simulator

Latent 2

We cannot compute p(z|6) = [ p(z, 2]0)dz

However, using techniques from probabilistic programming we can often extract

p(x,z]0)

e thejoint likelihood ratio (x, z|0) = Pect (2.2)
).

e thejoint scoret(m,z\@) = Vy logp( 3



This is interesting because

e thejoint likelihood ratio is an unbiased estimator of the likelihood ratio,

e thejoint score provides unbiased gradient information

—> use them as labels in supervised NN training!

Classifier output

1.0 1

0.8 1

0.6 1

0.4 1

0.2 4

0.0 4

Likelihood ratio trick

—— 5(x|6p,61)
© Xe=p(x|0=86;=0.0)
Xe ~p(x]60 =8, =0.6)

O P O 00 @ Oenmo
2 2 6
Observable

Likelihood ratio

+ joint likelihood ratio

| = r(x|6o,61)
o rix, 2|80, 61), x ~ p(x|8 = Bg)
r(x, 2|6y, 81}, x ~ p(x|6 = 61)

Observable

Log likelihood ratio

=1.00 1

| |
= =
u ¥
o w

—1.75 1

—2.00

—2.25 1

—2.50 A1

—2.75 A

-3.00+
-1.0

+ joint score

o

— logr(xg|6,61)
® logrixo, 2|6, 6,), tixo, 2|6)

T T T
-0.5 0.0 0.5 1.0

Parameter
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RASCAL

| Observed data Prior
Parameters € > Tobs
P~ s AN e O 9?. l
! A7 X % -
Observables ./é;“\.i,')’ & Approximate e
> T > U A :
: likelihood
- ratio P
Simulat Pl \ —— (z.2]0) > . R
Imulator {6 )] arg min L[g] — 7 (z|f) ——— | : R
i — (x, 2|A) > g P
Latent z
Augmenteddata e
0;
1. Simulation 2. Machine Learning 3. Inference
Augment training data &
Extract joint likelihood ratio 9 9

use as labels in new loss functions
= improve training efficiency

and joint score from simulator



The Bayesian way



Approximate Bayesian
Computation (ABC)

_il

Summary Summary Observed
Prior Parameters Simulator Observables  statistics statistics data
!
p(0) — § — —r — Lobs <« ZLobs
P / ! -
Keep — 2/ — alpall < €?

Parameters sampled from
approximate posterior

0 =" p(6|!

“obs

Issues

e Howtochoosez'?¢€?|| - ||?

e No tractable posterior.

e Need to run new simulations for new data or new prior.

Credits: Johann Brehmer.



Amortizing Bayes

The Bayes rule can be rewritten as

p(z|0)p(0)
p(z)

p(flz) = = 7(2|0)p(0) ~ 7 (x|6)p(6),

p(z|0)

wherer(z|6) = () s the likelihood-to-evidence ratio.

As previously, the ratio can be learned with the likelihood ratio trick!
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_

z,0 ~ p(x,0) Simulator

Q
o O

/ classifier

00000
Q000

z,0 ~ p(ﬂf)p(g) Simulator




The solution d found after training approximates the optimal classifier

p(z,0)
(z,0) +p(z)p(8)

d(z,0) ~d*(x,0) =
p

Therefore,

aloy_ PO _ p@0)

p(z)  p(z)p(f) 1-d(z,0)
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Likelihood-free MCMC

MCMC samplers require the evaluation of the posterior ratios, which can be

obtained by evaluating the ratio of ratios:

p(enew|a7) - p(wwnew p( new)/p(w)

)
p(0i-1lz)  p(x[6i1)p(0i-1)/p(x)
_ r(m‘enew) ( new)
( ) p(0:-1)

Vor(z|0)
r(x|6)

o x|0:—1

Extensions with HMC is possible since Vyp(z|0) =

Density MCMC Reration

v

] B

s 8 s
e N(&.,0)
—————#3 I

2 2

Posteriorn(B,..) Beta(1,1,0.306) x Binomial(10,4, 0.306)

Step 1 (B, B) =
Posterior(8.., ) Beta(1,1,0.429) x Binomial(10,4, 0.429)

= 0.834

Step2: Acceptance probabllity «(8.., 8.1) = min{r(8,., ,68.,), 1} = min{0.834,1} = 0834
Step 3: Draw u ~ Uniform(0,1) = 0.617

Stepd: If U<OBuw,B.) - If 0617 <0.834 Then 8 = B = 0.306
Otherwise & = 8., = 0.429

Image credits: Chuck Huber, 2016.
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https://blog.stata.com/2016/11/15/introduction-to-bayesian-statistics-part-2-mcmc-and-the-metropolis-hastings-algorithm/

Diagnostics

How to assess that the
approximate posterior is
not wrong?




Coverage
e Foreveryz, 0 ~ p(x,0)inavalidation set,compute the 1 — a credible
interval based on p (0|x) = 7 (x|0)p(0).

e The fraction of samples for which @ is contained within the interval
corresponds to the empirical coverage probability.

e Ifthe empirical coverageislarger that the nominal coverage probability
1 — «, then the ratio estimator 7 passes the diagnostic.
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Convergence towards the nominal value 6*

If the approximation 7 is correct, then the posterior

oy POpE) T () ]
B(612) = PEOREE — (o) _/pw) p(wé,)cw]

AS
~1
(z]0")
m\é’

xR

>

~ p(0)

T

8

should concentrate around @* as the number of observations

X ={xy,....,z,},

forz; ~ p(xz|0*),increases.
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ROC AUC score

The ratio estimator 7 (z|6) is only exact when samples x from the reweighted
marginal model p(x) 7 (|6) cannot be distinguished from samples x from a
specific likelihood p(x|0).

Therefore, the predictive ROC AUC performance of a classifier should be close to
0.5 if the ratio is correct.
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Showtime!



Case 1: Hunting new physics at particle colliders
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Error in likelihood ratio estimation

-—-- CARL

2D histogram —-= SALLY
CASCAL
ROLR —-—-- RASCAL

0.175 1
|~ SALLY and RASCAL
0.150 - .
require less data than
0.125 1 / existing ML method
0.100 -
0.075 A
0.050 1 D Ba.seline:
N ) 2D histogram
. ., N
0.025 A t.‘h‘ o - (based on large
R TS e training sample
0.000 T T A BSmmnat
10° 10% 10° 108 107

Training sample size

e V2IN2

1.0

0.5 4

0.0

—0.5

-1.0

-1.0

Expected exclusion limits
at 68%, 99.7% CL

== SALLY
=== RASCAL

Truth
2D histogram

-05 05 1,

— RASCAL and SALLY
enable stronger
constraints than
— 2D histogram

Limits from RASCAL
indistinguishable

\ from

true likelihood
0

With enough training data, the ML algorithms get the likelihood function right.

Using more information from the simulator improves sample efficiency
substantially.
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galaxy
galaxy cluster

_ lensed galaxy images

Case 2: Dark matter substructure from gravitational lensing
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Palomar 5

(Pal5) stream
Pal5 was discovered in 2001 as
the first thin stream formed from

- * a globular eluster. Its current orbit
) takes it far over the galactic center.

.

Globular clusters

These hives typically hold
100,000 stars or fewer and give
rise to long, thin streams.

T Gap

Y

InteracfcionUE)”f”F?jéi FWith two ...

Stream > subhaloes

10 0 10 20

>-scaled angle along stream {degrees)

GD1 stream
Discovered in 2006, GD1 is
the longest known thin stream,
stretching across more than half the
northern sky. It contains a gap that could

Image B8 theseaiaf agarkmatter collision
500 million years ago.
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https://www.youtube.com/watch?v=uQVv_Sfxx5E
https://www.youtube.com/channel/UCnGt3T--gflcoOttV3kqTYg
https://t.co/U6KPgLBdpz?amp=1

My

Observed stellar densit TN TN . .
Y - (O log # (x| #) o (log 7 (x]9)) Ao, x)
b
N
— X —» }
M
"/- -.\' - ~
(] log p(#|x) exp(log p(|x)) —
9 —» { )
log p(49)
A >y
7
Receiver operating curve diagnostic
Architecture 68% CR 95% CR 1.0
x| @) with & £ (mypy)
MLP 0.685 0.004 0.954 Lo 002 08
MLP-BN 0.687 10,006 0.951 10,002 =4
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e 08w 09 am 4 At
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RESNET-50 . 0.006 0.944 10,002 3.0 0.0 RESNET-50-BN (AUC = 0.571)
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Coverage

MwWDM

@Convergence to 0*
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False positive rate
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Posterior density

@

Full GD-1 posterior

Marginalized GD-1 posterior -0
0.040
6.5
0.035 1
G.0
0.030 1 5
G55
0.025 1 E
ot
0.020] & 5.0
=
0.015 245
[#5]
0.0101 e
0.005 1 15
0.000 4
T T T T T T 3‘{]
0 10 20 30 10 30
MWDM MWD

Preliminary results for GD-1 suggest a preference for CDM over WDM.
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The frontier
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The frontier of simulation-based inference

Kyle Cranmer®™'(, Johann Brehmer*®, and Gilles Louppe®

“Center for Cosmology and Particle Physics, New York University, New York, NY 10003; *Center for Data Science, New York University, New York, NY 10011;

and “Montefiore Institute, University of Liege, B-4000 Liége, Belgium

Edited by Jitendra Malik, University of California, Berkeley, CA, and approved April 10, 2020 (received for review November 4, 2015)

Many domains of science have developed complex simulations to
describe phenomena of interest. While these simulations provide
high-fidelity models, they are poorly suited for inference and lead
to challenging inverse problems. We review the rapidly devel-
oping field of simulation-based inference and identify the forces
giving additional momentum to the field. Finally, we describe how
the frontier is expanding so that a broad audience can appreciate
the profound influence these developments may have on science.

statistical inference | implicit models | likelihood-free inference |
approximate Bayesian computation | neural density estimation

echanistic models can be used to predict how systems
will behave in a variety of circumstances. These run the
gamut of distance scales, with notable examples including par-
ticle physics, molecular dynamics, protein folding, population
genetics, neuroscience, epidemiology, economics, ecology, cli-
mate science, astrophysics, and cosmology. The expressiveness of
programming languages facilitates the development of complex,
high-fidelity simulations and the power of modern computing
provides the ability to generate synthetic data from them. Unfor-
tunately, these simulators are poorly suited for statistical infer-
ence. The source of the challenge is that the probability density
{or likelihood) for a given observation—an essential ingredient
for both frequentist and Bayesian inference methods—is typi-
cally intractable. Such models are often referred to as implicit
models and contrasted against prescribed models where the like-
lihood for an observation can be explicitly calculated (1). The
problem setting of statistical inference under intractable likeli-
hoods has been dubbed likelihood-free inference—although it
is a bit of a misnomer as typically one attempts to estimate
the intractable likelihood, so we feel the term simulation-based
inference is more apt.
The intractability of the likelihood is an obstruction for scien-
tific progress as statistical inference is a key component of the
scientific method. In areas where this obstruction has appeared,

the simulator—is being recognized as a key idea to improve the
sample efficiency of various inference methods. A third direction
of research has stopped treating the simulator as a black box and
focused on integrations that allow the inference engine to tap
into the internal details of the simulator directly.

Aamnidst this ongoing revolution, the landscape of simulation-
based inference is changing rapidly. In this review we aim to
provide the reader with a high-level overview of the basic ideas
behind both old and new inference techniques. Rather than
discussing the algorithms in technical detail, we focus on the
current frontiers of research and comment on some ongoing
developments that we deem particularly exciting.

Simulation-Based Inference

Simulaters. Statistical inference is performed within the context
of a statistical model, and in simulation-based inference the sim-
ulator itself defines the statistical model. For the purpose of this
paper, a simulator is a computer program that takes as input avec-
tor of parameters &, samples a series of internal states or latent
variables z ~ pi(z:|#, z<,), and finally produces a data vector
T~ pixz|#, z) as output. Programs that involve random samplings
and are interpreted as statistical models are known as probabilis-
tic programs, and simulators are an example. Within this general
formulation, real-life simulators can vary substantially:

+ The parameters & describe the underlying mechanistic model
and thus affect the transition probabilities p,(z|#, =, ). Typ-
ically the mechanistic model is interpretable by a domain
scientist and & has relatively few components and a fixed
dimensionality. Examples include coefficients found in the
Hamiltonian of a physical system, the virulence and incubation
rate of a pathogen, or fundamental constants of Nature.

« The latent variables = that appear in the data-generating pro-
cess may directly or indirectly correspond to a physically mean-
ingful state of a system, but typically this state is unobservable
in practice. The structure of the latent space varies substantially
between simulators. The latent variables may be continuous

CoLLOGUILM
PAPER

w
4]
E
=
=
=
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In summary

e Much of modern science is based on simulators making precise predictions,
but in which inference is challenging.

e Machine learning enables powerful inference methods.
e They work in problems from the smallest to the largest scales.

e Further advancesin machine learning will translate into scientific progress.
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Thanks!
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The end.
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